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Abstract. We calculate the effective dielectric tensor of a metal film penetrated by cylindrical holes filled
with a nematic liquid crystal (NLC). We assume that the director of the NLC is parallel to the film, and
that its direction within the plane can be controlled by a static magnetic field, via the Freedericksz effect.
To calculate the effective dielectric tensor, we consider both randomly distributed holes (using a Maxwell-
Garnett approximation) and a square lattice of holes (using a Fourier technique). Both the holes and the
lattice constant of the square lattice are assumed small compared to the wavelength. The films are found
to exhibit extraordinary light transmission at special frequencies related to the surface plasmon resonances
of the composite film. Furthermore, the frequencies of peak transmission are found to be substantially
split when the dielectric in the holes is anisotropic. For typical NLC parameters, the splitting is of order
5–10% of the metal plasma frequency. Thus, the extraordinary transmission can be controlled by a static
magnetic or electric field whose direction can be rotated to orient the director of the NLC. Finally, as
a practical means of producing the NLC-filled holes, we consider the case where the entire perforated
metal film is dipped into a pool of NLC, so that all the holes are filled with the NLC, and there are also
homogeneous slabs of NLC on both sides of the film. The transmission in this geometry is shown to have
similar characteristics to that in which the NLC-filled screen is placed in air.

PACS. 78.67.-n Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
– 78.66.Sq Composite materials

1 Introduction

The recent discovery [1,2] of “extraordinary transmission”
of light through a metal film perforated by a periodic array
of sub-wavelength holes has stimulated worldwide interest.
This transmission is widely believed to result from the cou-
pling of light to plasmons on the surface of the patterned
metal film [2–4]. At particular wavelengths, this coupling
is exceptionally strong, permitting a very high fraction of
incident light energy to be transmitted through the film.
This proportion can far exceed the areal fraction of holes
on the metal film surface.

In a recent paper [5], it was shown that a magnetic
field applied parallel to the film would significantly alter
this transmission. The alteration occurs because the mag-
netic field makes the metal dielectric tensor anisotropic.
The effective dielectric tensor εe(ω) of the composite film
also becomes anisotropic, and the frequencies of the sur-
face plasmons (SP’s) are shifted, as is the frequency of
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the peak transmission. These calculations are carried out
in the long wavelength limit, in which the distance be-
tween the holes is small compared to a wavelength. Un-
der these circumstances, the optical properties of the film
can be treated in terms of an effective film dielectric ten-
sor. Unfortunately the materials like Ag, Au, Al, tradi-
tionally used in extraordinary light transmission studies,
can not be used for such magnetic field sensitive devices,
since in such materials the dimensionless magnetic field
H ≡ ωcτ = µB is very small due to low electronic mobil-
ity µ (here ωc = eB/me is the cyclotron frequency, τ is
the conductivity relaxation time, B is the magnetic field
measured in conventional unites [6–8]). In order to see the
effect of a static magnetic field on the value of the plasmon
frequency ωp, in reference [5] it was proposed to use semi-
conductor materials like GaAs and InAs. The idea to use
the magnetic field in order to affect the surface plasmons
and therefore to control the light propagation is used also
in references [9–16].

In this paper, we extend this idea to perforated metal
film (made from metals traditionally used in such cases,
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such as Ag, Au, or Al), whose holes are filled by a uniaxi-
ally anisotropic dielectric, such as a nematic liquid crystal
(NLC). NLCs strongly affect the optical properties of var-
ious inhomogeneous dielectrics. For example, the photonic
band gap of a periodic dielectric infused with the NLC can
be tuned, and even made to close, by suitably orienting
the principal axis n̂ of the NLC, known as the director,
with an electric field [17]. Similarly, the SP frequencies
of both random distributions and chains of small metal
particles are altered when these systems are immersed in
the NLC [18–22]. For the present application, we assume
that n̂ is perpendicular to the hole axis [23]. For this film,
we again find that the transmission peak is shifted by the
anisotropy, and is split for different polarizations of inci-
dent light. Since n̂ can be rotated by changing the direc-
tion of an applied static magnetic field H0 (see Fig. 1a)
(so-called magnetic Freedericksz effect [25,24]), this result
implies that the transmission can be controlled simply by
rotating H0 even if this magnetic field has no effect on
plasma frequency ωp of the metallic film (like Ag, Au, Al,
etc.).

Another, technically more convenient method to con-
trol light transition, is using of an electric field E0. For
this, we can take the entire metal-perforated film and dip
it into a large pool of the NLC (see Fig. 1b). Thus, all
the holes are filled with NLC, and there are also layers of
NLC on both sides of the film. Then it is easy to align the
NLC director within the holes by applying a static elec-
tric field E0 (so-called electric Freedericksz effect [25,24])
along the film plane, e.g., in x-direction. This will align
the NLC in the holes, and also in the medium on either
side of the film (see Fig. 1b). Then it is easy to re-align
the NLC director in another direction, e.g., along z-axis
just by applying a static electric field E0 in this direction.
It is still possible to calculate the transmission as a func-
tion of the orientation of the electric field relative to the
hole lattice. The only difference in the calculation is that
one has three anisotropic layers instead of just one in the
previous case. This geometry shows that the system we
envision can be prepared physically.

The remainder of this paper is arranged as follows.
In Section 2, we describe our method of calculating the
effective permittivity tensor ε̂e for both random and or-
dered arrangements of cylindrical holes in a metallic film.
In Section 3, we present numerical results for both cases,
based on these expressions, followed by a brief discussion
in Section 4.

2 Formalism

Let us consider a geometry which corresponds to the
above-mentioned experiment [1–3]: a metal film, with a
square array of identical perpendicular cylindrical holes,
is placed in a static, in-plane magnetic H0 (or electric E0

field) whose direction can be rotated within the xz plane
(see Fig. 1). A monochromatic light beam, of angular fre-
quency ω, impinges upon this film along the perpendicular
axis y, with linear polarization along the principal axis x
of the array — see Figure 1.

(a)

(b)

Fig. 1. (a) Schematic drawing of a metal film with a periodic
array of holes filled with a NLC whose director is parallel to the
film and can be rotated in the film plane by a static magnetic,
H0, (or electric E0) field. The coordinate axes x, y, z, are
always directed along the principal axes of the simple square
lattice, and the applied static magnetic field H0 (created by a
system of solenoids) always lies in the film plane. The incident
light beam is normal to the film surface, i.e., the ac electric
field E is parallel to the film plane, while the wave vector is
normal to it (i.e., k ‖ y). Note that the ac magnetic field B of
the light wave (B ⊥ E) is not important in our considerations
and we omit it everywhere. Insets: the a × a unit cell of the
periodic composite film with a cylindrical hole of radius R filled
with a NLC whose director is parallel to the film and can be
rotated by application of a static magnetic H0 (or electric E0)
field whose direction can be rotated within the xz-plane. (b)
(Color online) Schematic drawing of a metal film perforated
by a square array of holes and dipped into a pool of NLC.
The center layer (shaded, with circular holes) represents the
metal film; the other two layers represent homogeneous layers
of NLC.

We first consider a single cylindrical hole in a metal-
lic host (see inset to Fig. 1). The hole is assumed paral-
lel to the y axis, and filled with an anisotropic material
having a dielectric tensor with principal components εii,
(i = x, y, or z). In the calculations shown below, we con-
sider εzz �= εxx = εyy. The host has an isotropic com-
plex, and frequency-dependent dielectric constant εm(ω).
To compute the frequency of an SP bound to the hole, we
consider an applied uniform ac electric field E (i.e., the
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electric field of the incident electromagnetic wave). Then
the electric field Ein within the hole is also uniform and
may be written [5,8,26–30]

Ein = γ̂ · E, (1)

where γ̂ is a 3 × 3 matrix, diagonal in the (x, y, z) coor-
dinate system, with components γyy = 1,

γxx =
εxx

εxx − nxδεxx
, γzz =

εzz
εzz − nzδεzz

. (2)

Here, δεii = εm − εii, and the quantities nx and ny are
depolarization factors given by

ny = 0, nx =
1

1 +
√
εzz/εxx

, nz = 1 − nx. (3)

For simplicity, we assume the host has a Drude dielectric
function,

εm = 1 − ω2
p

ω(ω + i/τ)
, (4)

where ωp = (4πn0e
2/m)1/2 is the plasma frequency (n0 is

the density of charge carriers, e is the charge of one carrier,
and m is its effective mass, see references [8,26]) and τ is
a relaxation time. We consider the limit ωpτ → ∞. The
frequency ωsp,i of the SP polarized in the ith direction
is that frequency where Ein (see Eq. (1)) becomes very
large even for a very small applied field. This condition is
satisfied when

εm;ii(ωsp,i) − niδεii(ωsp,i) = 0. (5)

For example, ωsp,x satisfies the equation

εm − εxx − εm

1 +
√
εm,zz/εm,xx

= 0. (6)

Substituting equation (4) into this and similar written for
y-direction expressions, and letting ωpτ → ∞, one obtains

ωsp,x =
ωp√

1 + εxx
, ωsp,z =

ωp√
1 + εzz

. (7)

As an example, suppose that the material within the
hole is the NLC known as BEHA (p-butoxyphenyl ester-
p′-hexyloxybenzoic acid [31]), an uniaxial dielectric with
principal dielectric constants 1.96, 1.96, and 2.56 [32].
If n̂‖x̂, then equations (3) show that the SP frequen-
cies are split in this case by ∼0.06ωp. The dimensions
of the NLC molecules are typically ∼20 Å in length
and ∼5 Å in width [24,31], which are small compared
to the typical dimensions of the holes used in experi-
ments (d ∼ 150–400 nm) as well as typical film thickness
(h ∼ 300 nm, see Refs. [1–4,33]) used in extraordinary
light transmission experiments. (The dimensions of the
holes should also be small compared to the wavelength
of light, in order for the theory given below to be rigor-
ously applicable. Possible effects arising from larger hole
dimensions are briefly discussed below).

Next, we approximately compute the tensor ε̂e(ω). The
film is appropriately described by ε̂e if it is homogeneous
on a scale of the electromagnetic wavelength. If the holes
form a periodic lattice, as in experiments, this description
is suitable provided the lattice constant is much less than
a wavelength. The effective permittivity tensor ε̂e(ω) is
defined by the relation

ε̂e〈E(x)〉 = 〈ε̂(x) · E(x)〉, (8)

where 〈...〉 denotes a volume average, and ε̂(x) is the local
dielectric tensor. We now discuss the calculation of εe(ω)
in several regimes.

First, we consider a dilute collection of parallel, right-
circular cylindrical inclusions. For a dilute suspension of
inclusions, the tensor ε̂e takes the form [30]

ε̂e = ε̂m − pδε̂ · γ̂, (9)

where p is the volume fraction of inclusions. For the
present geometry under consideration, where the symme-
try axes of the cylinder and the NLC are perpendicular,
ε̂e takes the form

εe,ii = εm

[
1 − p

δεii
εm − niδεii

]
, (10)

where i = x, y, z, nx and nz are given by equations (3)
and ny = 0.

In Maxwell-Garnett (MG) (or Clausius-Mossotti) ap-
proximation [27,28], equation (10) takes a slightly differ-
ent form:

εe,ii = εm

[
1 − p

δεii
εm − ni(1 − p)δεii

]
. (11)

The analog of equation (5) is εm− ni(1− p)δεii = 0, from
which in the limit ωpτ → ∞ we obtain the following ex-
pression for ωsp:

ωsp,x =
ωp√[

1
nx(1−p) − 1

]
+ εxx

, (12)

ωsp,z =
ωp√[

1
nz(1−p) − 1

]
+ εzz

. (13)

The resonant frequency now depends on the volume frac-
tion of the holes, p. In the dilute limit (p → 0), expres-
sions (12), (13) reduce to equations (7).

In a typical experiment (e.g. those reported in Refs. [1]
and [2]), the cylindrical holes are arranged on a two-
dimensional periodic (usually a square) lattice. In this
case, the MG approximation is no longer the most ac-
curate method for calculating the tensor ε̂e(ω). A more
suitable approach is to use a Fourier expansion technique,
as done, e.g., in reference [5]. This approach is readily car-
ried out numerically, and the resulting ε̂e can be computed
for an arbitrary orientation of n̂ within the plane normal
to the cylinder axes.
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Fig. 2. (Color online) (a) Im ε
(e)
⊥ and Im ε

(e)
‖ vs. ω/ωp.

(b) Re ε
(e)
⊥ and Re ε

(e)

‖ vs. ω/ωp. (c) Transmission coefficient T

(see Eq. (16)) vs. frequency ω, for different polarizations E ‖ x
and E ‖ y. Full curves: analytical results using a Clausius-
Mossotti approximation (cf. Eqs. (11)). Points connected by
the dashed lines: numerical results using the method of refer-
ence [6] for a square array of right circular cylindrical holes.
Open triangles (�) and stars (∗): 3D calculations using the
unit cell whose side and top views are shown in insets to (a).
Solid (•) and open (◦) circles: results obtained from 2D calcu-
lations. In all cases, we take R/a = 0.1 (ratio of hole radius to
lattice constant), ωpτ = 40, and ωph/c = 5/3. (d) Similar to
(c), but the transmission coefficient T = |d(ω)|2 is calculated
for the case of the perforated film dipped into a large pool of
the NLC (see Fig. 1b).

3 Numerical results

In Figure 2a, we show the calculated Im εe(ω) for several
cases. In all cases, we assume that the cylindrical holes
are filled by BEHA, and that n̂‖x̂. For the metal film, we
assume ωpτ = 40. The filled curves without points are
the two principal components of Im εe, denoted Im εe,‖
and Im εe,⊥, corresponding to the in-plane components
parallel and perpendicular to n̂, as obtained in the MG
approximation. We use the dielectric properties of BEHA
and assume volume fraction p = 0.031 (i.e., the ratio of
hole radius to lattice constant R/a = 0.1). As in the previ-
ous Section, we take the n̂‖x̂, while cylindrical inclusions
are assumed ‖ŷ.

The filled and open circles in Figure 2a denote the
same quantities, but now for a square lattice of holes in the
shape of right-circular cylinders, again of volume fraction
p = 0.031. This value corresponds to holes of radius 0.1a
on a square lattice of lattice constant a. In this case, Im ε‖
and Im ε⊥ are calculated by a Fourier expansion technique
mentioned above, and described in detail in reference [5].

Two geometries were used: three-dimensional (3D)
sandwich-like system mimicking the 3D films of finite

thickness (side and top views of the unit cell of this com-
posite are shown in the insets to Fig. 2a) and a system
with infinitely long cylindrical holes, which reduces the
3D problem to a two-dimensional (2D) one: when the
length of the cylinder l is equal to the linear dimension,
a, of the unit cell (see inset to Fig. 2a), then each Fourier
component θg =

∫
unit cell

θ(r)e−ig·rdr (of the characteris-
tic θ(r)-function describing the cylinder) vanishes for each
reciprocal lattice vector

g = (gx, gy, gz) =
2π
a

(mx,my,mz) (14)

except for components with values gy = 0 only (here
mx, my, mz are the arbitrary integers). This can be seen
directly from the analytical form [6,7]: θg =(4π/a3g⊥)
RJ1(Rg⊥) sin(gyl/2)/gy, where g⊥ =

√
g2
x + g2

z and J1(x)
is a Bessel function (note that cylinder’s symmetry axis is
parallel to y-axis).

The effective permittivity ε
(e)
film of the 3D film of the

finite thickness can be extracted from the total effective
permittivity of the sandwich-like systems (shown in the
insets to Fig. 2a), ε(e)tot, using the exact relation for a sys-
tem of parallel slabs aligned along the electric field of the
incident wave E (see e.g., Ref. [30])

ε
(e)
tot = pslabεm + pfilmε

(e)
film, (15)

where pslab and pfilm are the volume fractions of the sub-
system with a cylindrical hole of finite length (denoted by
sub-index “film”) and the subsystem of two (upper and
lower) homogeneous slabs (denoted by sub-index “slab”),
respectively. εm in equation (15) is the permittivity of
these slabs as given by equation (4), pslab and pfilm were
taken of the values pslab = 0.2 and pfilm = 1− pslab = 0.8,
respectively.

In the case of a 3D system, we include 5831 Fourier
components of the electrostatic potential with arbitrary
integers mx, my, mz (see Eq. (14)) ranging from −9 up to
+9 in each direction (so that the total number of g vectors
reaches the value 183−1 = 5831). The dashed lines simply
connect the calculated points.

In the case of a 2D system we include 6399 Fourier
components of the electrostatic potential with 2D recip-
rocal lattice vectors g = (2π/a)(mx,mz), the arbitrary
integers of which ranging from −40 up to +40 in each di-
rections (so that the total number of g vectors reaches the
value 802 − 1 = 6399).

Despite the total numbers of Fourier components in
both 2D and 3D cases had the same order of magnitude,
in the 2D case all components were used for describing the
circular hole perpendicular to the xz-plane (note that the
resonance is very sensitive to the hole’s shape), while in
3D only some of Fourier components (182−1 = 323) were
used in this way. We prefer, therefore, to get the effective
values of the permittivity tensor ε̂e from the 2D calcu-
lations, while we will take the film thickness into account
by using the proper analytical expressions for optical light
transmission (see Eqs. (16)–(21) below).
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In the regions far away from the resonance, the results
of both 3D and 2D calculations are in good quantitative
agreement with each other as well as with our MG analyti-
cal predictions. However, in the very near of the resonance
there is a small discrepancy between them. In order to get
a better agreement, one needs to use in the calculations
a larger number of Fourier components, which is beyond
our computer capabilities.

In Figure 2b, we show the Reεe(ω) for the same cases
as in Figure 2a, as calculated by the MG approximation
and by the Fourier expansion technique. Finally, in Fig-
ure 2c, we show the calculated transmission coefficient T
for the dielectric functions presented in Figures 2a and 2b.
The dependence of the transmission coefficient T on fre-
quency ω, (as well as on the wave length λ) for different
film thicknesses can be obtained from the effective value εe
using the known expression [29,34] for T = |d|2:

d =
1 − r212

exp(−iψ) − r212 exp(iψ)
, (16)

where r12 = (1 − s)/(1 + s), s =
√
εe(ω), ψ = (ω/c)hs =

(ω/ωp)(ωph/c)s, and h is the film thickness. We assume
that the light is incident from, and transmitted into, a
material with dielectric constant ε = 1.

Equation (16) can be easily extended to the case of N
layers or N = N + 2 media system (N layers plus two
semi-infinite media on both sites), as follows:

d = Π1
i=N−1

(
eiψi +Rie

−iψi

1 +Ri+1

)
, (17)

Ri =
(1 +Ri+1) − κi+1(1 −Ri+1)
(1 +Ri+1) + κi+1(1 −Ri+1)

e2iψi , (18)

ψi =
ω

c
hisi =

ω

ωp

ωphi
c

si, (19)

κi = ki z/ki−1 z, (20)

ki z =
ω

c

√
εi. (21)

Here Π1
i=N−1 denotes the product from i = N − 1 to

i = 1, si =
√
ε
(e)
i (ω), and hi is the thickness of i-th me-

dia, excepting the first one, for which h1 = 0, and ψ1 = 0
(note also that RN = 0). For N = 3 the result of equa-
tions (17)-(21) coincides with that of equation (16).

A number of features are evident from Figure 2. First,
both the MG calculation and the Fourier calculation car-
ried out by the method of reference [5] (SB) show that Im
εe(ω) has sharp peaks which are split by the anisotropy of
the material in the cylindrical holes. These peaks corre-
spond to the SP resonances mentioned above. The split-
ting is quite pronounced (around 0.06ωp for the MG cal-
culation, and slightly smaller for the Fourier one), and
should be readily observable in experiment. Secondly, the
SP resonances are slightly shifted in the SB calculation rel-
ative to those obtained in the MG approximation. Since
the MG approximation is more appropriate for a ran-
dom distribution of holes, these results show that, even
for this small volume fraction, the effects of lattice peri-
odicity are quite noticeable, though they must vanish in

the limit of very small volume fraction. In addition, the
lower-frequency SP peak in the SB calculation appears to
be partially split; however, it is possible that this splitting
might be absent if still more Fourier components were used
in the computation. In both approximations, Re εe(ω) is
negative for all frequencies considered, and is an increasing
function of frequency at low ω, as expected for a metallic
film.

The transmission coefficient T (ω) (see Fig. 2c and
Eq. (16)), shows the characteristic “extraordinary trans-
mission” peaks expected on the basis of Figures 2a, 2b.
Both approximations show rather sharp SP peaks in the
transmission, which occur at different frequencies depend-
ing on the polarization of the incident radiation. They
occur at slightly different frequencies from the SP peaks
themselves. This is the expected behavior, since the SP
peaks correspond to absorption maxima. In fact, the
transmission peaks occur at frequencies which correspond
closely to the maxima in the real part of εe(ω) for the
chosen polarization. The maxima in T (ω) are indeed ex-
traordinary, reaching the range of 20%, even though the
holes themselves occupy only about 3% of the film vol-
ume fraction. The curves are obtained for the dimension-
less value ξ = ωph/c = 5/3. When for ωp = 1015 rad/s
(a typical for the Al value [30]) it corresponds to the
film thickness h = 0.5 µm (cf. with 200–300 nm in
the experiments [1,2,4,33,35]). The wave length of the
light corresponding to the resonance frequency ωsp (see
Eqs. (12, 13)) is of the order λ = 2πc/ωsp ∼ 3770 nm.
Since we have used the quasistatic approximation, the
wavelength should be much larger then the hole (cf. this
value of the wave-length λ ∼ 3770 nm with the hole sizes
used in the experiments ∼150–700 nm, see Refs. [33,35]).
We emphasize that in our calculations we have not used
any absolute values (except for the film thickness), but
only relative ones — namely, the ratio of the hole diame-
ter to the distance between holes. If in Figure 2 we were to
consider a smaller film thickness, then the transmissivity
coefficient, T definitely would be increased. In Figure 3 we
show the data, presented in Figure 2c, in terms of wave-
length λ.

In Figure 2d we show results analogous to those of
Figure 2c, but for the case of three layers (see Fig. 1b),
calculated using equations (17)-(21). The transmissivity
in this case depends also on thicknesses of both the homo-
geneous NLC layers (those on either side of the metallic
film). In the case shown in Figure 2d we used thicknesses
h2 = h4 = 3h3.

To illustrate the effects of a larger anisotropy, we show
in Figure 4 the same quantities, but calculated for a
hypothetical film in which the holes are filled with an
anisotropic dielectric with dielectric constants ε‖ = 4,
ε⊥ = 1. The effects seen in Figure 2 are still present, but
are significantly amplified by the larger anisotropy. There
are still strong “extraordinary” peaks in the transmission
coefficients corresponding to maxima in the real parts of
εe(ω) as in Figure 2c.

To investigate the effects of a larger volume frac-
tion of holes, we have carried out similar calculations for
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Fig. 3. (Color online) The same as Figure 2c, but vs. wave-
length λ. (a) ωp = 1015 rad/s; (b) ωp = 1016 rad/s.

Fig. 4. (Color online) Same as Figure 2, but for a hypothetical
material with ε‖ = 1, ε⊥ = 4, ωph/c = 50/3 (see explanation
to Eq. (16) and Fig. 2), i.e, h = 0.5 µm for Al.

p = 0.126. The results are shown in Figure 5. The features
are similar to those seen in Figure 2, except that, in the
SB calculation the SP peaks are significantly more broad-
ened than at p = 0.031. By contrast, there is no increase
in the widths of the SP peaks calculated in the MG ap-
proximation. Also, the transmission peaks for the smaller
p could be viewed as more “extraordinary” than those at
p = 0.126 because the ratio of the maximum T to the areal
fraction of holes is much greater at the smaller value of p.
However, in both cases, the fraction of power transmitted
is far larger than the hole areal fraction.

4 Discussion

The present work suggests that extraordinary transmis-
sion through perforated metal films can easily be con-
trolled by filling the holes with an NLC such as BEHA.

Fig. 5. (Color online) Same as Figure 1, but for p = 0.126.
ωph/c = 60/3 (see explanation to Eq. (16) and Fig. 2), i.e,
h = 0.6 µm for Al.

One control scheme might work as follows. The metal
screen would be dipped into a pool of NLC (at a temper-
ature T below the nematic-to-isotropic transition at Tc).
This would cause the NLC to penetrate into the holes of
the perforated film and also to form layers of homoge-
neous NLC on the two sides of the film. A static electric
field E0 would then be applied parallel to the film, causing
the NLC director to line up parallel to the applied electric
field outside the holes, and also, since the free energy of
the NLC would be minimized if the director is everywhere
pointing in the same direction, both within the holes and
in the two layers. A second scheme would be the follow-
ing (if one could introduce NLC into the holes within the
metal screen but not outside the screen). In this case, a
static magnetic field be applied parallel to the film sur-
face. For both schemes, since the transmission would dif-
fer substantially for n̂ parallel and perpendicular to the
polarization of the incident wave, T (ω) through the film
could be controlled simply by rotating E0 or H0. Thus,
we would have the possibility of a film which could be con-
verted from nearly transparent to nearly opaque, simply
by rotating an applied field. Such a material could have
many possible applications.

We conclude with a final remark. Our method of calcu-
lation assumes that the lattice constant of the hole lattice
is small compared to the wavelength of light. Nonetheless,
we believe that the effects predicted here for such lattice
constants should persist even for lattice constants com-
parable to a wavelength, as in most experiments to date.
One reason for our belief is that, even though the spac-
ing and wavelength are comparable, the electric field of
a normally incident plane wave is uniform in the direc-
tion transverse to the wave propagation. The extension
of the present calculations to this regime would be chal-
lenging, since the computation of transmission through
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a perforated metallic film is quite intricate when the
wavelength and lattice constant are comparable[3]. It
would be of great interest if the present calculations could
be extended into this regime.

This work has been supported by NSF Grant DMR04-13395,
by the US/Israel Binational Science Foundation, and the
KAMEA Fellowship program of the Ministry of Absorption
of the State of Israel. We also benefited from the computa-
tional facilities of the Ohio Supercomputer Center and the Is-
rael Inter-University Centers. We thank Dr. Sung Yong Park,
Prof. M.I. Shliomis and Prof. A.N. Zakhlevnykh for valuable
conversations.

References

1. T.W. Ebbesen, H.H.J. Lezec, H.F. Ghaemi, T. Thio, P.A.
Wolff, Nature 391, 667 (1998)

2. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J.
Lezec, Phys. Rev. B 58, 6779 (1998)

3. J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev.
Lett. 83, 2845 (1999)

4. L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M.
Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Phys. Rev.
Lett. 86, 1114 (2001)

5. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 59, R12763
(1999)

6. Y.M. Strelniker, D.J. Bergman, Phys. Rev. B 50, 14001
(1994)

7. D.J. Bergman, Y.M. Strelniker, Phys. Rev. B 49, 16256
(1994)

8. D.J. Bergman, Y.M. Strelniker, Phys. Rev. Lett. 80, 857
(1998)

9. D.M. Newman, M.L. Wears, R.J. Matelon, Europhys. Lett.
68, 692 (2004)

10. G. Duchs, G.L.J.A. Rikken, T. Grenet, P. Wyder, Phys.
Rev. Lett. 87, 127202 (2001)

11. L.E. Helseth, Phys. Rev. B 72, 033409 (2005)
12. A. Garcia-Martin, G. Armelles, S. Pereira, Phys. Rev. B

71, 205116 (2005)
13. M. Diwekar, V. Kamaev, J. Shi, Z.V. Vardeny, Appl. Phys.

Lett. 84, 3112 (2004)
14. M. Golosovsky, Y. Neve-Oz, D. Davidov, Phys. Rev. B 71,

195105 (2005)
15. B. Sepulveda, L.M. Lechuga, G. Armelles, J. Lightwave

Technology 24, 945 (2006)
16. A. Boardman, N. King, Y. Rapport, L. Velasco, New

Journal of Physics 7, 191 (2005)

17. K. Busch, S. John, Phys. Rev. Lett. 83, 967 (1999)
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